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We conaider self-ducl p-branes in various
backgrounds. In particular, wve discuss
solf-dual membranes and lumps immersed in
the exceplicnal’ geometries. We describe
an algerithm for generaling o class of
potential solutions which we call '‘quote’
(quaternienic knots) and we show how these
come Lo within o  single sign change of
being actual amclutions.

0. Introduction

Moving from strings to p-branes (see [1]1> has given extra
vitality to discussion of the geometry of minimal immersions. The
second order equations of motion of p-branes are in general highly
non-linear and as such are hard to solve. However. Biran, Floratos
and Savvidy (2] have pionesred an approach feor constructing
self~dual equations which are first order and are soluble in
particular cases.

Recently, Grabowski and Tze [3] have pointed out that there
might be a new class of excepticnal geometries for which self-dual
equations can be constructed. This paper concentrates on the case
of a 3-branme C(lumpd in 8 dimensions which we call a €4;8)-brane.
We show that the self-duality ansatze does not automatically
satisfy all the constraints, as was the case with the original
example of Biran et al. and was said to be the case in [31, but
rather we show that one of the constraints is equivalent to the
self—-dual equation itself.

By analogy with (p,q) torus knots invoked in the solution of
self-dual CZ2;4d>-brane [4r, wer intreduce the quaternionic
counterpart, (p,g>) gquots, as a proposal for the formulation of
specific solutions of the self-dual (4;8)-brane equation. Although
tantalizingly close, we show that some new idea is required before
this ansatze will yield full solutions.

* The use of a semi-colon in this context 1s to distinguish our

notation frem that of some other authors who call this a
3,83 -brane.



1. Brane Dynamics

The action of a (d;D)-brane is given by the generalised
Einstein-Nambu-Goto volume integral

S=TJ S a & 49

where
u v
By = X g =t x 1.2
al afu af HY - € M
with po,v=0,1, ..,D-1 and a,b=0,1,.. .,d-1 unless D and d are ocdd 1in

which case we count from 1 to D and 1 to d respectively. :_"Lhe
fundamental constant of the theory, T, has dimensions [ML “1;
with the speed of lighl c=L.

Variation of this action gives the generalised geocdesic
equation

ab o _ €

H HoV A =
X T X‘b]-o ¢ 33
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The (d;D)~brane is taken to be closed so that no boundary
conditicns need to be considered.

We consider the case of a flat Euclidean background space

where n,uv= Diag <¢1,1,...,12. We also introduce the conjugate
moment um
PH e L 1 S s X+ C1.4d
SX *
Hea

The equation of moticn €1.32 then reduces to

aupw = 0 1.5

The constraints on the motion can be written

a M _ L a
PEX =L & T e 1.8

which corresponds to the vanishing of the Hamiltonian, and

Pabe’u = 1% 5 & €1.7

which is the extended object generalisation of pz=mz for
relativistic particles.

2. Self-Dual (d;d)-Branes

Consider (2;2)-brane (string in two dimensional space-time)
and define self-dual (2;2)-brane by

F =T e e X ce.129

b
where e is the two dimensional permutation symbol fixed by

&%t = 1 ca 2

b
Recall that the two dimensional permutation tensor £%° 1s defined
by

" ab 20
£ o= 2.3
¥ g
Also note that v 5 =1 and therefore that
MY = MY ca. 4>

in our particular case. gau ig thus a worldsheet tensor density

which satisfies (1.8) since d'XUb is symmetric in a and b while
a B

ab ; :
e is antisymmetric.

Expanding ¥ g  explicitly for the (2;2)-brane gives
S =x° x* -t x° 2.5
- Y K- M

gives

while expanding 3‘1“)(# &

cz.62

s , 0

o [x"‘;(" DN

,0 S4

o 1 1 .
Pgux'ub = Te“s“vx“ X“b =: T [X ,ux K 1] N
. »< .

showing that constraint (1.6) is satisfied. Substituting (2.1
into €1.7> gives

;Q 'F’b“ =T % x* ebds“ x°
K Y e P d

ab

Z e%%%y =77 Ad) & LT ss ca. 7
a

=T e By

So constraint (1.7) is satisfied. The self-dual equation 1is

L= a

therefore P = ;“ , that i1s, from (1.4> and (2.13,

= £ bs” x~ z.8
S a v b

."f'u



Similarily it can be shown (5] that self-dual (d;d>-branes
can be defined generally by
~ 5 aaa ...a yu b -
B =T =577 €123 d4 £ ‘ X"z XTa ... .X'd (2.9
'ul Cd-12 Hl“z“i‘ My ,az ,aa ay

This satisfies the equation of motion by symmetry arguments. It
also satisfies Lhe constraints from the properties of contracted
products  of permutation tensors and by the definition of
Hdeterminant in terms of permutation tensors.

The covariant self-dual (3;3)-brane equation is therefore

= %% M XMz xMa c2.102
a [ g=1 -
1 i 2 3 - 3

?
[

In a gauge in which g is diagonal, Biran et al. simplify (2.10)
& ab plify

to

e epzpz“s Ez2 ETa Ce22112
a a a
1 12 3 2 3

where

Fp i cz.12

and show that

KCEY = RCf*){cos¢5553coswcz2>,cosé(f*")smw{:’),sin@(:s)} 2.13
and
1 3 2 i 3 g 2
XCEDY = {[R+rCE dcos®CE )]cosi(f ).[R*rCE dcos®C? )]szni(f 2.

,rcz‘)smﬁc.f’)} c2.14)
are solutions of C(2.11). )
XCEY = {Rczbscszgcosecsaa.Rct‘psczzjsan@cf).
i £ S 2 2 =
: [RCE > - scg?> }} (2.15

and
XCZd = x{sinh@(:‘>sm§cg‘)cos~pcfa> ,SInAOCE s inECE sindcE?),

cosh@(f‘)cosi‘»({z)} 2. 18)

are alsc solutions of (2.11D.

3. Self-Dual (d;D)-Branes

The self-dual equation of rigid string instantons (41,
self-dual (2;4)-branes, can be derived by defining

B* =T &%y ¥+ o Bt
“ HY b

where an almost complex structure has been imposed on space-time
by

¢3.22

e ooy
000
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E3D automatically solves (1.5 and Gl. %72 but only
satisfies (1.68) on condition that

e = wa"‘ ox”ﬁ 3.3

as is the case if X¥ has the symmetry of
Q2

A -B
** ~ 1B A €3.40
-3 C D
-D &
which is true in, for example, the case of
x+ = [Ta— aro®, 3r%0 - o', o= 1%, -2to ] 3.5

where 1=¢° and o=¢l.

Another interesting example of a self-dual (d;D)-brane (d<D2
has been discussed by Grabowski and Tze [3]. This is the first
exceptional case (see (812, a (3;7)-brane (see also (7] for a
(2;8)-brane>. Define

B =T Lo X 3.8
M 2 HUAT B e

where Cyuk are the octonion structure constants. (3.6 satisfies
€1.5) because of the complete antisymmetry of vah' (3.6 also

satisfies C1.7) as can be demonstrated using the identity

€ P 2 5P 5% P vy FT 2.7

LVA oY uov Y
where u,v,..=1,2,....,7 and H#Vpo is a completely antisymmetric
rank 4 tensor which gquantifies the non-associativity of octonion
multiplicatieon 1n a similar way that vak quantifies their

non-commutativity.



However, (1.82 is only satisfied if

Y R T 2.8y
3 JUEEY S R S )

lonsider the self-dual (2;7)-brane squaticen resulting from (3 &)
and C1i.42,

o § be L u

x“_a =16 > X ’h)(:'“'c C3. 8
Zontracting (3.87 with X’u'a glves (2.8, The self-dual equation is
satisfied if (3.8) is. The right side of (2. B) can b2 regarded as
A geh@ralisad Jaceobian for immersions.

Cne approach to oblaining a solution te (2.9 or €3.8) is to
Ltake the self-dual (3;3)-brane solutions (2.13-16) as triwvial
13,;7)-~brane solutions. Cyvk is invariant under Gz transformalions.

Takimg a general matrix G#ve Gz. then

f. o, T
G =
3 Gv G‘\ [ C;.Jv?\ €3.103

Substituling this into (3.83 glves
=c G Pxt 1s “x¥ ¥
I M{# AMF e €311

Thus applying a general transformation of the seven dimensional
representation of the exceplicnal Lie group Gz to our triwvial

C®;7>-brane soclutions will give the solutions In a form which
which might be more interesting. We shall not pursue this approach

here but we shall make 2 fow more remarks about C© e
H

A basis for octenion multiplicalicn is defined as admissible
if it is such that

lo,110,1 = (00,1 . Oe&© ¢3.12)

which is equivalent to the condition that

2
[Ve-cO‘ ~ VecOz] = Dat [VecO, 5 VecO} €3.13)
: 3

where i, j=1.2. The caret symbol signifies the cross product in 7
dimensions which is defined by C,uvk Csee [8]> and tLhe dot

signifies the 7 dimensional dot product. Both these producis are a
consequence of octonion muitiplicaticon. VecO, Oc®, is similar to
ImZ, 2&L, and selects the 7 dimensional wvecter part of 0. CFor a
quaternion CGeM. VecQ selects the 3 dimensional vector part of @.2

The identity

£3.14)

rtdentity,

(5 = = H c (3.1852

which follows by application of (3.73 to (3.143.

A particular basis 1s specified by a list of 7 triples each
invalving 3 of the integers 1 to 7 without repetition. Cyclic
rotations of a triple give an equivalent triple. The quaternionic
analogue Is the basis for the usual cross product in 3 dimensions.

This cross product is based on the S(32 i1nvariant tensor quc

which 1% characterised by a single triple involving Lthe integers 1
to 3. The triple 123 is eguivalent to 312 or 23t and specifies

Y & C3. 182
cabc & eabc

by defining e 25 = +1, which wuniquely implies, by complete
1

antisymmetry, =2l]l of the other components of eabc. The only

alternative basis for gquaterntons is the traiple 132 which
signifies the distinction between l=ft and right handed coordinate
systems in 3 dimensions.

Far octonions there are 480 different choices of basis, 240
clockwise and 240 anti-clockwise. We call a basis anit-clockwise
if it can be represented on thae diagram in Figure ! where A to G
are L& bhe identified one to one with the integers 1 to 7 in some
order.

Figure 1. Represenlalion of the 240 anti-clockwise

bases of cctenmen mulliplication.



Ezch of Lhe 7 triangles represents one of Lhe 7 triples,
‘he arrow 1ndicates the order. 1f, for example, & to G are
dentified with 1 to 7 respeclively then figure 1 represents the

3]

P

v

=

1
REETL
Nix g Qd o
WA A

This is interpreted as meaning that st4=l along with the
st her t wio evern permutaticns. [ = =1. The thres odd
413 34t

permut atlons are then =i c = = _=-1. This assignment
143 314 434

process 1s repeated for each of the 7 Lriples and all olher

=lements of < W are set to zero. There are, on the face of 1L, 7!
o

ways of placing 1 toe 7 on figure 1. However the starting pos:ition
1s arbitrary so 7! should be divided by 7. Alsc since cyclic

permutations are irrelevant. each basis is equivalent to two
others generated by cyclically permuting the entire columns of the
basis. Figure 1 therefore represents _:: 240 distinct bases.

Changing the directions of all the arrows on figure 1 gives the
240 clockwlse bases.

In summary, any admissible basis can be written such that
each of the integers ! to 7 appears one and only one time in each
coiumn, and each row does not have repelitions, The other
important characteristic of an admissible basis is that no two
rows have more than one ilnteger in common. This rules out as
1Z3
234

inadmissible a basis such as Ei:& .
gii

4. Self-Dual (4;8)-Brane

Since guaternions have embeddings in octomens, H «— O, it
1= natural to generalise Lhe (32;7)-brane, seen as VecH — VecO,
to (4:8)-brane. This 1nvclves Lthe second fundamental geometry with
an exceptional automorphism group. For self-dual C(4.87-brane we
write

B oL a0t p XY i % C4.12
= al HLpoo o e d
The completely antisymmetric tensar T;uu,oa was introduced in [9).

it can be defined., making use of (3.7), {rom

T = *C
QUL VP
4. 20
T = M
Hppo [Hyoy="a4
where p,v=1,2,. .. ,7 buti u,v=0. Choosing the positive sign defines
a self-dual tensor Tgv,oo wv=0,1,28,....,7 while choosing the
nagative sign defines an anti-self -dual tensor. Changing betwsen
anti-zlockwise and rclockwise bases of C© has an eguivalent

LYo
effect so we can take Lhe positive sign in (4.2) without loss
provided we consider both clockwise and anti —-clockwise bases.

Consider the ’'double self-duality’ eguation analogous to
self-dual Yang—Mills

P o L, ed pHY PO 4.3
ab 4 ab por  cd
whar e
Y H C4. 43>
ab rla Jol
Contract (4.3 with Xp'b gives
W g L PR pH x¥ %P x° 4.5
- 3 a vy oo 4

which is the self-dual equation arising from <(4.12 and €1.40.

Contracting C4.%) with X‘u'a gives

J& =T xH xY wP X7 4.8
FRrayared K R

which 1$ the condition necessary for €4.12 to satisfy censtraint
71.68%. The eguation of motion (1.8 and the second cohstraint
(1.7 are automatically satisfied by (4.1 without further
conditions,



S. (p,q) Quots
Consider a quaterniomic curve satisfying
e vt =0 UV e M 5.1

A selution i1s given by

v=k , v=-xkKP , KeH 3. 23
Take the case where

K =t + xv + yj + 2k =1t +rr 5. 30
and p=2, =3, then

vo=ct? - aer® o+ ca? - rPor
and 5. 43

v = ¢r® - %> - 2tr

Call this gquaternion analogy of a (2,32 terus knot, a (2,30 guot.
Neow construct an octornion X by catenating U to V¥V, inserting a
dimensionful constant (with dimensions of length), L, {(which we
shall henceforth set to 1) to avoid dimensional problems:

i q
PAdy = c v, L Py (5.5

Then consider FIX as a potential scolution of (4.% or (4.6).
Writing

PayH = ¢ SeU, Vecl, ScV, Vecl 2

then

2 = [c:’ - 3r®, 3 - for, or® - P, ~2t1:) 5. 83

Let us first compute ¥ g  from this ”x. We find

23 2 2 2 2 2 2. ® 2
g = Cti+ r)[QCL + 13 s 4][<3a - . caa)] C5. 7
23 : 22

For X to have a chance of solving (4.86) Det &, must be a

al

perfect square. (5.7) shows that 21X does satisfy this non-triwvial
criterion.

The left side of (4.6) does not appear to depend upon the
basis chosen for octonion multiplication whereas the right side
certainly does, from (4.2). Therefocre X could only be expected
to satisfy (4.6) 1n one particular choice of basis. So what basis
should we use?

In fact we have made an implicit choice of basis in our
construction of -°X. Defl ning a complex number as two real numbers
catenated together 1s equivalent to saying that the first is the
real part and the second is the imaginary part of the complex

number . Symbolically;

C=CcR. R> =R + iRD s, 82
1 z 1 2

However, the situation 1s more involved in the case of quaternions
because the real and imaginary parts are now themselves complex
numbers.

H=cCC.C> ECC-*_;‘E)‘_—‘{(I'E-PLTR > + jCR_+ (iR 3}
17 72 1 2 11 12 21 z2

= (CR + iR + jR - kR _D 8.9
14 iz Z1 22

in the usual 123 basis. Note the appearance of the minus sign . To
avoid this we shall put the basis element to the right of the
coefficient. So our understanding of how we have derived an
octonion from two quaternions is, symbolically,

O = CCH‘.[HZD = C[H1+ IHZD = {CG’.'u+ Cﬂ;) + C€21+ czz’n}
c8.

= { [C R111+R1121) +(ER121+D21221; > J] N [c m22£+miizi) e &221.*."222!1)]}}1

It is this we are taking ‘to be our octonion. Therefore we are
implicitly taking ij=k Ci.e. 1232, il=m (i.e. 1451, jl=n (i.e.
2462 and Cijd)l=kl=o Ci.e. 3472. The only admissible basis with

123
248

those assignments 1is zg; Changing the signs of wvarious
617
734

coefficients of 27X is equivalent to choosing different implicit

bases.

Calculating the right hand side of C(4.62 in this basis gives

XX = T 23y 23,0 23,0 23,0
Hypo o 1 pr 3 E]

2 r
= i D [ga’+ P 4] [c3a‘—rz:g - cau] ¢5.11)

Comparing with (5. 7) we see that the only difference 1s a single
sign.



For the case of a (2.5) gquot we have

&

A
By = (usw 106%0%+ 8ir%3, ¢S5t4-106%2% riop, -
. X"
crf- 1%, —aw] 5.1 x
r s
¥We find ¥
x/‘
z 2 2z 2 < 2 2z 2 2 t o= O
g = Cts r )[asu v ¥ e 4.]{(& ~ 100507 % . cau} (5.13

while, in Lthe chosen basis,

E 2 2
BEPURHK = €L+ oD [asaz«- PRI 4]{(55“« 1oe?r?s % - ca:;} 5. 142
These again only differ by a single sign. Similarily,
2 2 z 2 £ 2 z 2 z 2
a = ctF+ 25 [15(: + r¥y o+ g]{[uc: - r )] e c3:*- r’)} ¢B. 15y
and

2

2
= ¢t 5 [16Ct2+ 5+ Q]{<5¢°—10¢2r2+ r*>

2z
@ 3~ 2% } €s.18>
where & ldentifies t{he offending sign.

These results enabie us tu formulate the general empirical
result that

z 2. P'r2 2 2 TP, 2 2
Pl = s % {qn+r) +p]{fce;o+fcp) } ¢5.173
whare
T2l
1 n | N
fen> = Z ) ghTE p2me C5.18)
T 2j-1

The corresponding expression for PI9TXX(XX requires only the last +

sign tn (5.17) to be changed. Note that Det LI is always a
al

perfect sqguare. Changing., for example, the signature of the
space-time metric destroys this necessary condition. PPIXXXX = O,
Alsc note, if fCp) = O then FPIX is a solution of C4.83.

The formulae of (5.17 & 18) enabled us to correctly predict

- z
e = cife p% {49(zz+ r3 . 4]{(7:"— 35¢*r+ 21d7rt- 5

2 (@]
@ (2t } el

oo

Figure 7;

A representation of the 0,8 Quot
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Obviously one would hope that changing to another basis, or

ir the anti-self-dual wversion of T , @ rearrangin Lhe
aking i 5 L gind
ows and columns of ¥ , or multiplylng some of the raows and
Bl
ol umns of xH by -1 . all of which leave ¥ & unchanged, would
a

neple one to alter the offending sign in TXXXX. We argue that
his is not possible. Firstly note that all of these variables are
bsorbed in the 'change of basis’ wvariable.

Takea Za.sc“*c and write 1t out explicitly.
[3:."— 3r® Bt Bty Btz 1
RAGE = St 3¢~ 3x2-y2—2 =X y —2x2
e ! Gy —2xy i - 3y2—22 —2wz
2z z7z H
B e —2yz 3t -x"-yT - 3= % 205
-2t Zx =) 2z .
= =] Q o]
—&y o] -2t o
22 o] o] =1

XXXM prcks one entry from each column for Lthe non-zero components

i Tawwpe and multiplies them together with a %1 in front depending

pon Lthe bazis chosen. Motice that v 233 in (5.7 contains terms
]

~15z‘, +4xd, +4y'§ and +4z2z . There is only on® way to obtain these

erms in TXXXX:

vigt* s T =+ v H = 4 s.213
- SaTe LBa7
+d 4 - T = -3 & H = +1 L8.aa0
" E3d 4523
+4y 2 T = -1 o M = +1 B8.a3>
P 7254 4102
+4z = T = =1 oM = +1 CS. 243
8233 4427
Jsing (3.7, (5.2 & 222 imply that C = C = C and (3.23 &
4L o7 Z31
242 imply that C = 5 = . We require an admissible basis to
445 o3 273
AL
£a1
axist containing 53 which of necessily requires one of the

mnknown rows to be 437 or 473 because both missing rows must
contain a 4 and the remaining four elements must be Laken from
2,3,8 and 7 since every number has to appear three times in total.
dow, rotating the rows into standard form in which Lhere is no
epetition in the columns, we find. fixing the first row as 145,

snly two possibilities, and both of which have 4.3 and

u&wu»
- W .
- Awke
N s
-umnac
SIghs i

7 in the same column. Therefore it 15 impossible to add 437 or 473
is a new row without introducing repetition in the central column.
Therefora no basis can make (5.11) egqual to (B, 7.
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